Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
Emerg Infect Dis ; 30(6)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640498

RESUMO

We characterized the evolution and molecular characteristics of avian influenza A(H7N9) viruses isolated in China during 2021-2023. We systematically analyzed the 10-year evolution of the hemagglutinin gene to determine the evolutionary branch. Our results showed recent antigenic drift, providing crucial clues for updating the H7N9 vaccine and disease prevention and control.

2.
Front Cell Infect Microbiol ; 14: 1308742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558852

RESUMO

Background: Growing evidence has shown that gut microbiome composition is associated with Biliary tract cancer (BTC), but the causality remains unknown. This study aimed to explore the causal relationship between gut microbiota and BTC, conduct an appraisal of the gut microbiome's utility in facilitating the early diagnosis of BTC. Methods: We acquired the summary data for Genome-wide Association Studies (GWAS) pertaining to BTC (418 cases and 159,201 controls) from the Biobank Japan (BBJ) database. Additionally, the GWAS summary data relevant to gut microbiota (N = 18,340) were sourced from the MiBioGen consortium. The primary methodology employed for the analysis consisted of Inverse Variance Weighting (IVW). Evaluations for sensitivity were carried out through the utilization of multiple statistical techniques, encompassing Cochrane's Q test, the MR-Egger intercept evaluation, the global test of MR-PRESSO, and a leave-one-out methodological analysis. Ultimately, a reverse Mendelian Randomization analysis was conducted to assess the potential for reciprocal causality. Results: The outcomes derived from IVW substantiated that the presence of Family Streptococcaceae (OR = 0.44, P = 0.034), Family Veillonellaceae (OR = 0.46, P = 0.018), and Genus Dorea (OR = 0.29, P = 0.041) exerted a protective influence against BTC. Conversely, Class Lentisphaeria (OR = 2.21, P = 0.017), Genus Lachnospiraceae FCS020 Group (OR = 2.30, P = 0.013), and Order Victivallales (OR = 2.21, P = 0.017) were associated with an adverse impact. To assess any reverse causal effect, we used BTC as the exposure and the gut microbiota as the outcome, and this analysis revealed associations between BTC and five different types of gut microbiota. The sensitivity analysis disclosed an absence of empirical indicators for either heterogeneity or pleiotropy. Conclusion: This investigation represents the inaugural identification of indicative data supporting either beneficial or detrimental causal relationships between gut microbiota and the risk of BTC, as determined through the utilization of MR methodologies. These outcomes could hold significance for the formulation of individualized therapeutic strategies aimed at BTC prevention and survival enhancement.


Assuntos
Neoplasias do Sistema Biliar , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Neoplasias do Sistema Biliar/genética , Causalidade
3.
J Cereb Blood Flow Metab ; : 271678X241248907, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661094

RESUMO

Blood-brain barrier (BBB) disruption is increasingly recognized as an early contributor to the pathophysiology of cerebral ischemia/reperfusion (I/R) injury, and is also a key event in triggering secondary damage to the central nervous system. Recently, long non-coding RNA (lncRNA) have been found to be associated with ischemic stroke. However, the roles of lncRNA in BBB homeostasis remain largely unknown. Here, we report that long intergenic non-coding RNA-p21 (lincRNA-p21) was the most significantly down-regulated lncRNA in human brain microvascular endothelial cells (HBMECs) after oxygen and glucose deprivation/reoxygenation (OGD/R) treatment among candidate lncRNA, which were both sensitive to hypoxia and involved in atherosclerosis. Exogenous brain-endothelium-specific overexpression of lincRNA-p21 could alleviate BBB disruption, diminish infarction volume and attenuate motor function deficits in middle cerebral artery occlusion/reperfusion (MCAO/R) mice. Further results showed that lincRNA-p21 was critical to maintain BBB integrity by inhibiting the degradation of junction proteins under MCAO/R and OGD/R conditions. Specifically, lincRNA-p21 could inhibit autophagy-dependent degradation of occludin by activating PI3K/AKT/mTOR signaling pathway. Besides, lincRNA-p21 could inhibit VE-cadherin degradation by binding with miR-101-3p. Together, we identify that lincRNA-p21 is critical for BBB integrity maintenance, and endothelial lincRNA-p21 overexpression could alleviate cerebral I/R injury in mice, pointing to a potential strategy to treat cerebral I/R injury.

4.
Front Immunol ; 15: 1327503, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449873

RESUMO

Background: Numerous observational studies have identified a linkage between the gut microbiota and gastroesophageal reflux disease (GERD). However, a clear causative association between the gut microbiota and GERD has yet to be definitively ascertained, given the presence of confounding variables. Methods: The genome-wide association study (GWAS) pertaining to the microbiome, conducted by the MiBioGen consortium and comprising 18,340 samples from 24 population-based cohorts, served as the exposure dataset. Summary-level data for GERD were obtained from a recent publicly available genome-wide association involving 78 707 GERD cases and 288 734 controls of European descent. The inverse variance-weighted (IVW) method was performed as a primary analysis, the other four methods were used as supporting analyses. Furthermore, sensitivity analyses encompassing Cochran's Q statistics, MR-Egger intercept, MR-PRESSO global test, and leave-one-out methodology were carried out to identify potential heterogeneity and horizontal pleiotropy. Ultimately, a reverse MR assessment was conducted to investigate the potential for reverse causation. Results: The IVW method's findings suggested protective roles against GERD for the Family Clostridiales Vadin BB60 group (P = 0.027), Genus Lachnospiraceae UCG004 (P = 0.026), Genus Methanobrevibacter (P = 0.026), and Phylum Actinobacteria (P = 0.019). In contrast, Class Mollicutes (P = 0.037), Genus Anaerostipes (P = 0.049), and Phylum Tenericutes (P = 0.024) emerged as potential GERD risk factors. In assessing reverse causation with GERD as the exposure and gut microbiota as the outcome, the findings indicate that GERD leads to dysbiosis in 13 distinct gut microbiota classes. The MR results' reliability was confirmed by thorough assessments of heterogeneity and pleiotropy. Conclusions: For the first time, the MR analysis indicates a genetic link between gut microbiota abundance changes and GERD risk. This not only substantiates the potential of intestinal microecological therapy for GERD, but also establishes a basis for advanced research into the role of intestinal microbiota in the etiology of GERD.


Assuntos
Refluxo Gastroesofágico , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Reprodutibilidade dos Testes , Refluxo Gastroesofágico/genética , Clostridiales
5.
Pak J Med Sci ; 40(4): 572-576, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544999

RESUMO

Objective: To explore the effects of serum glycated serum protein (GSP), homocysteine (Hcy) and cystatin-C (Cys-C) levels on pregnancy outcomes in patients with gestational diabetes mellitus (GDM). Methods: Retrospective selection of 247 pregnant women who underwent normal prenatal examinations in The Yan'an People's Hospital from January 2020 to May 2022 were included in this retrospective study. Among them, 119 were pregnant women with diabetes (GDM-group) and 128 were pregnant women with normal blood glucose (Normal-group). The levels of serum GSP, HCY, CYS-C, and incidence of adverse pregnancy outcomes were compared between the two groups. The clinical value of levels of serum GSP, Hcy, and Cys-C in predicting adverse pregnancy outcomes were analyzed. Results: Compared with the Normal-group, the overall incidence of adverse pregnancy outcomes, serum GSP, Hcy, and Cys-C levels in the GDM-group were significantly higher (p<0.05). Logistic regression analysis showed that the levels of GSP, Hcy, and Cys-C were independent risk factors for adverse pregnancy outcomes in the GDM-group (p<0.05). Receiver operating characteristic (ROC) curve showed that the area under the curve (AUC) for diagnosing adverse pregnancy outcomes in pregnant women with GDM using serum GSP, Hcy, and CysC levels alone were 0.817, 0.843, and 0.775, respectively. The AUC of the three indicators combined was 0.921, indicating that this combination has a good predictive value for diagnosing adverse outcomes in GDM-complicated pregnancies. Conclusions: GDM is associated with a high risk of adverse pregnancy outcomes. Levels of serum GSP, Hcy, and Cys-C are higher in patients with GDM. The higher the levels of GSP, Hcy, and Cys-C, the greater the risk of adverse pregnancy outcomes. Combining these three indicators can effectively predict maternal pregnancy outcomes.

6.
Aging (Albany NY) ; 16(6): 5711-5739, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38535988

RESUMO

BACKGROUND: Observational studies have previously shown a possible link between fatty acids and aging-related diseases, raising questions about its health implications. However, the causal relationship between the two remains uncertain. METHODS: Univariable and multivariable Mendelian randomization (MR) was used to analyze the relationship between five types of fatty acids-polyunsaturated fatty acid (PUFA), monounsaturated fatty acid (MUFA), saturated fatty acid (SFA), Omega-6 fatty acid (Omega-6 FA), and Omega-3 fatty acid (Omega-3 FA) and three markers of aging: telomere length (TL), frailty index (FI), and facial aging (FclAg). The primary approach for Mendelian randomization (MR) analysis involved utilizing the inverse variance weighted (IVW) method, with additional supplementary methods employed. RESULTS: Univariate MR analysis revealed that MUFA, PUFA, SFA, and Omega-6 fatty acids were positively associated with TL (MUFA OR: 1.019, 95% CI: 1.006-1.033; PUFA OR: 1.014, 95% CI: 1.002-1.026; SFA OR: 1.016, 95% CI: 1.002-1.031; Omega-6 FAs OR=1.031, 95% CI: 1.006-1.058). PUFA was also associated with a higher FI (OR: 1.033, 95% CI: 1.009-1.057). In multivariate MR analysis, after adjusting for mutual influences among the five fatty acids, MUFA and PUFA were positively independently associated with TL (MUFA OR: 1.1508, 95% CI = 1.0724-1.2350; PUFA OR: 1.1670, 95% CI = 1.0497-1.2973, while SFA was negatively correlated (OR: 0.8005, 95% CI: 0.7045-0.9096). CONCLUSIONS: Our research presents compelling evidence of a causal association between certain fatty acids and indicators of the aging process. In particular, MUFA and PUFA may play a role in slowing down the aging process, while SFAs may contribute to accelerated aging. These findings could have significant implications for dietary recommendations aimed at promoting healthy aging.


Assuntos
Ácidos Graxos Ômega-3 , Ácidos Graxos , Gorduras na Dieta , Análise da Randomização Mendeliana , Ácidos Graxos Insaturados , Ácidos Graxos Monoinsaturados
7.
Small ; : e2311630, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470212

RESUMO

The floating gate devices, as a kind of nonvolatile memory, obtain great application potential in logic-in-memory chips. The 2D materials have been greatly studied due to atomically flat surfaces, higher carrier mobility, and excellent photoelectrical response. The 2D ReS2 flake is an excellent candidate for channel materials due to thickness-independent direct bandgap and outstanding optoelectronic response. In this paper, the floating gate devices are prepared with the ReS2 /h-BN/Gr heterojunction. It obtains superior nonvolatile electrical memory characteristics, including a higher memory window ratio (81.82%), tiny writing/erasing voltage (±8 V/2 ms), long retention (>1000 s), and stable endurance (>1000 times) as well as multiple memory states. Meanwhile, electrical writing and optical erasing are achieved by applying electrical and optical pulses, and multilevel storage can easily be achieved by regulating light pulse parameters. Finally, due to the ideal long-time potentiation/depression synaptic weights regulated by light pulses and electrical pulses, the convolutional neural network (CNN) constructed by ReS2 /h-BN/Gr floating gate devices can achieve image recognition with an accuracy of up to 98.15% for MNIST dataset and 91.24% for Fashion-MNIST dataset. The research work adds a powerful option for 2D materials floating gate devices to apply to logic-in-memory chips and neuromorphic computing.

8.
Aging (Albany NY) ; 16(4): 3596-3611, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364235

RESUMO

BACKGROUND: The causative implications remain ambiguous. Consequently, this study aims to evaluate the putative causal relationship between gut microbiota and Esophageal cancer (EC). METHODS: The genome-wide association study (GWAS) pertaining to the microbiome, derived from the MiBioGen consortium-which consolidates 18,340 samples across 24 population-based cohorts-was utilized as the exposure dataset. Employing the GWAS summary statistics specific to EC patients sourced from the GWAS Catalog and leveraging the two-sample Mendelian randomization (MR) methodology, the principal analytical method applied was the inverse variance weighted (IVW) technique. Cochran's Q statistic was utilized to discern heterogeneity inherent in the data set. Subsequently, a reverse MR analysis was executed. RESULTS: Findings derived from the IVW technique elucidated that the Family Porphyromonadaceae (P = 0.048) and Genus Candidatus Soleaferrea (P = 0.048) function as deterrents against EC development. In contrast, the Genus Catenibacterium (P = 0.044), Genus Eubacterium coprostanoligenes group (P = 0.038), Genus Marvinbryantia (P = 0.049), Genus Ruminococcaceae UCG010 (P = 0.034), Genus Ruminococcus1 (P = 0.047), and Genus Sutterella (P = 0.012) emerged as prospective risk contributors for EC. To assess reverse causal effect, we used EC as the exposure and the gut microbiota as the outcome, and this analysis revealed associations between EC and seven different types of gut microbiota. The robustness of the MR findings was substantiated through comprehensive heterogeneity and pleiotropy evaluations. CONCLUSIONS: This research identified certain microbial taxa as either protective or detrimental elements for EC, potentially offering valuable biomarkers for asymptomatic diagnosis and prospective therapeutic interventions for EC.


Assuntos
Neoplasias Esofágicas , Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Neoplasias Esofágicas/genética
9.
Ecotoxicol Environ Saf ; 273: 116138, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394759

RESUMO

The mechanism by which Y. ruckeri infection induces enteritis in Chinese sturgeon remains unclear, and the efficacy of drug prevention and control measures is not only poor but also plagued with numerous issues. We conducted transcriptomic and 16 S rRNA sequencing analyses to examine the differences in the intestinal tract of hybrid sturgeon before and after Y. ruckeri infection and florfenicol intervention. Our findings revealed that Y. ruckeri induced the expression of multiple inflammatory factors, including il1ß, il6, and various chemokines, as well as casp3, casp8, and multiple tumor necrosis factor family members, resulting in pathological injury to the body. Additionally, at the phylum level, the relative abundance of Firmicutes and Bacteroidota increased, while the abundance of Plesiomonas and Cetobacterium decreased at the genus level, altering the composition of the intestinal flora. Following florfenicol intervention, the expression of multiple apoptosis and inflammation-related genes was down-regulated, promoting tissue repair. However, the flora became further dysregulated, increasing the risk of infection. In conclusion, our analysis of the transcriptome and intestinal microbial composition demonstrated that Y. ruckeri induces intestinal pathological damage by triggering apoptosis and altering the composition of the intestinal microbiota. Florfenicol intervention can repair pathological damage, but it also exacerbates flora imbalance, leading to a higher risk of infection. These findings help elucidate the molecular mechanism of Y. ruckeri-induced enteritis in sturgeon and evaluate the therapeutic effect of drugs on intestinal inflammation in sturgeon.


Assuntos
Enterite , Doenças dos Peixes , Oncorhynchus mykiss , Tianfenicol/análogos & derivados , Yersiniose , Animais , Yersinia ruckeri/genética , Yersiniose/microbiologia , Doenças dos Peixes/patologia , Peixes , Inflamação
10.
Circ Res ; 134(7): e17-e33, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420756

RESUMO

BACKGROUND: Microvascular complications are the major outcome of type 2 diabetes progression, and the underlying mechanism remains to be determined. METHODS: High-throughput RNA sequencing was performed using human monocyte samples from controls and diabetes. The transgenic mice expressing human CTSD (cathepsin D) in the monocytes was constructed using CD68 promoter. In vivo 2-photon imaging, behavioral tests, immunofluorescence, transmission electron microscopy, Western blot analysis, vascular leakage assay, and single-cell RNA sequencing were performed to clarify the phenotype and elucidate the molecular mechanism. RESULTS: Monocytes expressed high-level CTSD in patients with type 2 diabetes. The transgenic mice expressing human CTSD in the monocytes showed increased brain microvascular permeability resembling the diabetic microvascular phenotype, accompanied by cognitive deficit. Mechanistically, the monocytes release nonenzymatic pro-CTSD to upregulate caveolin expression in brain endothelium triggering caveolae-mediated transcytosis, without affecting the paracellular route of brain microvasculature. The circulating pro-CTSD activated the caveolae-mediated transcytosis in brain endothelial cells via its binding with low-density LRP1 (lipoprotein receptor-related protein 1). Importantly, genetic ablation of CTSD in the monocytes exhibited a protective effect against the diabetes-enhanced brain microvascular transcytosis and the diabetes-induced cognitive impairment. CONCLUSIONS: These findings uncover the novel role of circulatory pro-CTSD from monocytes in the pathogenesis of cerebral microvascular lesions in diabetes. The circulatory pro-CTSD is a potential target for the intervention of microvascular complications in diabetes.


Assuntos
Catepsina D , Diabetes Mellitus Tipo 2 , Monócitos , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Catepsina D/metabolismo , Catepsina D/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Precursores Enzimáticos , Camundongos Transgênicos , Monócitos/metabolismo , Transcitose/fisiologia
11.
Heliyon ; 10(4): e25658, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38370202

RESUMO

Degenerative tendon injuries are common clinical problems associated with overuse or aging, and understanding the mechanisms of tendon injury and regeneration can contribute to the study of tendon healing and repair. As a transcription factor, Mohawk (Mkx) is responsible for tendons development, yet, the roles of which in tendon damage remain mostly elusive. In this study, using Mkx overexpressed mice on long treadmill as an in vivo model and MkxOE Achilles tenocytes stimulated by equiaxial stretch as an in vitro model, we anaylsed the effects of Mkx overexpression on the tendon. Mkx and tendon tension strength were decreased after the expose to excessive mechanical forces, and Mkx overexpression protected the tendon from damage. Moreover, we revealed that the Wnt/ß-catenin activation, inflammation, and Runx2 expression were increased at the injured Achilles tendon, upregulated Mkx significantly reversed the increased Wnt/ß-catenin pathway, Tnf-α, Il-1ß, and Il-6 levels, and reduced tendon cell damage. However, Wnt3a, IWR and BIO had not significantly affected the Mkx expression in achilles tenocytes. In conclusion, Mkx is involved in tendon healing and protects the tendon from damage through suppressing Wnt/ß-catenin pathway, suggesting Mkx/Wnt/ß-catenin pathway may be potential therapeutic targets for tendon damage.

12.
Heliyon ; 10(1): e23426, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38173512

RESUMO

Ischemia-reperfusion (I/R) injury constitutes a significant risk factor for a range of diseases, including ischemic stroke, myocardial infarction, and trauma. Following the restoration of blood flow post-tissue ischemia, oxidative stress can lead to various forms of cell death, including necrosis, apoptosis, autophagy, and necroptosis. Recent evidence has highlighted the crucial role of mitochondrial dysfunction in I/R injury. Nevertheless, there remains much to be explored regarding the molecular signaling network governing cell death under conditions of oxidative stress. Voltage-dependent anion channel 1 (VDAC1), a major component in the outer mitochondrial membrane, is closely involved in the regulation of cell death. In a cellular model of oxygen-glucose deprivation and reoxygenation (OGD/R), which effectively simulates I/R injury in vitro, our study reveals that OGD/R induces VDAC1 oligomerization, consequently exacerbating cell death. Furthermore, we have revealed the translocation of mixed lineage kinase domain-like protein (MLKL) to the mitochondria, where it interacts with VDAC1 following OGD/R injury, leading to an increased mitochondrial membrane permeability. Notably, the inhibition of MLKL by necrosulfonamide hinders the binding of MLKL to VDAC1, primarily by affecting the membrane translocation of MLKL, and reduces OGD/R-induced VDAC1 oligomerization. Collectively, our findings provide preliminary evidence of the functional association between MLKL and VDAC1 in the regulation of necroptosis.

13.
Heliyon ; 10(1): e23872, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38223733

RESUMO

Background: Observational studies have previously demonstrated a significant relationship among both metabolic syndrome (Mets) and colorectal cancer (CRC). Whether there is a causal link remains controversial. Objective: To clarify whether Mets and their components have a causal effect on colorectal cancer, we have carried out a bidirectional Mendelian randomization analysis (MR). Methods: This study started from genome-wide association data for Mets and its 5 components (hypertension, waist circumference, fasting blood glucose, serum triglycerides, and serum high-density lipoprotein cholesterol) and colorectal cancer. Mendelian randomization (MR) techniques were used in the study to examine their associations. Results: After Benjamini-Hochberg multiple corrections, genetically predicted significant causal link exists between WC (waist circumference) and CRC. The OR was 1.35 (95 % CI: 1.08-1.69; p = 0.0096). Other Mets components (HBP, FBG, TG, HDL), on the other hand, found no evidence of a genetic link between CRC and Mets. In addition, MR results showed that CRC was not causally related to either Mets or the components. We get the same result in the validated dataset. Conclusion: According to the bidirectional MR investigation shows a significant causal relationship among obesity and CRC in the Mets component but no causal relationship in the opposite direction.

14.
Int Immunopharmacol ; 129: 111591, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38295544

RESUMO

BACKGROUND: Enteric nervous system (ENS) has been closely associated with the neuro-immune response and is currently considered a reliable target for intestinal inflammation. Neuronal nitric oxide synthase (nNOS) nerves are involved in inflammatory diseases by releasing nitric oxide (NO). EphB2 expression and density of innervation of the mucosal layer are positively correlated with the severity of intestinal inflammatory responses. In this study, we hypothesized that a EphB2-mediated mechanism may regulate enteric immunity through modulation of nNOS nerves. METHODS: Firstly, the Western blot (WB) method was employed to quantify EphB2 expression in the intestinal mucosal layer of DSS mice and assess alterations in nerve fiber activation and density. Immunofluorescence (IF) double staining with nNOS and neuronal marker PGP9.5 was conducted to measure nNOS nerve fiber density within the intestinal mucosal layer of mice. Subsequently, in vivo experiments were performed to investigate the inhibitory or activatory effect of EphB2Fc or EphrinB2Fc on EphB2 expression and activation. Immunoprecipitation experiments confirmed the interaction between EphB2 and nNOS nerves. WB and IF experiments were carried out to evaluate both inflammatory conditions of mouse colonic mucosa following intervention with EphB2Fc/EphrinB2Fc as well as changes in nNOS nerve fibers expression. Finally, in vitro experiments, neurally-mediated inflammation was assessed in the organ bath system by activating intestinal mucosal innervation through Veratridine (VER) and electrical field stimulation (EFS) techniques for 3 h. The activation of nNOS nerves was inhibited by nitroindazole (7NI). WB was employed to detect changes in the expression of inflammatory factors in the intestinal mucosal layer in EphB2Fc/EphrinB2Fc treated mice and control group. KEY RESULTS: We found that the expression of EphB2 and density nNOS nerve fibers in the intestinal mucosa were positively correlated with the colitis response. Blocking (EphB2Fc)/activating (EphrinB2Fc) EphB2 in vivo significantly reduced/increased the density of nNOS nerve fibers and expression of inflammatory factors in colonic mucosa of DSS treated mice. In vitro, blocking nNOS nerves activation attenuated the inflammatory reaction induced by either EFS or EphB2. CONCLUSIONS: Our findings provided evidence that EphB2 mediated regulation of innate immunity-ENS crosstalk might represent an attractive target for novel therapeutic strategies in ulcerative colitis.


Assuntos
Colite , Sistema Nervoso Entérico , Animais , Camundongos , Colite/induzido quimicamente , Inflamação , Inflamação Neurogênica
15.
Front Pharmacol ; 14: 1281235, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116082

RESUMO

Background: Previous studies documented that heparin can inhibit the invasion and metastasis of tumors, but its role on outcomes in patients with solid malignancy complicated sepsis remains unclear. Methods: A retrospective cohort study was conducted in critically ill patients with solid malignancy associated sepsis from the Medical Information Mart for Intensive Care (MIMIC)-IV database. The primary endpoint was intensive care unit (ICU) mortality, secondary outcomes were thrombosis and hospital mortality. Propensity score matching (PSM), marginal structural Cox model (MSCM), cox proportional hazards model, stratification analysis and E-value were used to account for baseline differences, time-varying confounding and unmeasured variables. Results: A total of 1,512 patients with solid malignancy complicated sepsis were enrolled, of which 683 in the heparin group with intensive care unit mortality, thrombosis rate and hospital mortality were 9.7%, 5.4%, 16.1%, and 829 in the non-heparin group with ICU mortality, thrombosis rate and hospital mortality were 14.6%, 12.5%, 22.6%. Similar results were observed on outcomes for patients with PSM (ICU mortality hazard ratio [HR] 0.61, 95% confidence interval [CI] 0.41-0.92), thrombosis rate (HR 0.42, 95% confidence interval 0.26-0.68); hospital mortality HR 0.70, 95% CI 0.50-0.99). marginal structural Cox model further reinforced the efficacy of heparin in reducing ICU mortality (HR 0.48, 95% CI 0.34-0.68). Logistic regression and Cox regression model showed heparin use also markedly reduced thrombosis (HR 0.42; 95% CI 0.26-0.68; p < 0.001) and hospital mortality (HR 0.70; 95% CI 0.50-0.99; p = 0.043). Stratification analysis with the MSCM showed an effect only those with digestive system cancer (HR 0.33, 95% CI 0.16-0.69). Conclusion: Early heparin therapy improved outcomes in critically ill patients with solid malignancy complicated sepsis. These results are evident especially in those with digestive system cancer. A prospective randomized controlled study should be designed to further assess the relevant findings.

16.
Int Immunopharmacol ; 125(Pt A): 111006, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913568

RESUMO

With the rapid development of ultra-high voltage direct current (UHV DC) transmission technology, the intensity of electric fields in the surrounding environment of UHV DC transmission lines significantly increased, which raised public concerns about the potential health effects of electric fields. Previous studies have shown that the exposure of electromagnetic field was associated with cancer. B lymphocytes can produce autoantibodies and tumor growth factors through proliferation, which contributes to the development of cancer. Therefore, this study explored the effect and mechanism of static electric field (SEF) generated by DC transmission lines on the proliferation levels of B lymphocytes. Male mice were exposed to SEF. After the exposure of 7 and 14 days, the proliferation levels of B lymphocytes in the spleens of mice were measured, respectively. To validate biological effect discovered in animal experiments and elucidate the mechanism of the effect from the perspective of signaling pathways, lymphocytes were exposed to SEF. After the exposure of 24, 48 or 72 h, the proliferation levels of B lymphocytes, the expression levels of key proteins and cell cycle were determined. This study found that SEF exposure activated NF-κB pathway by stimulating ERK1/2 pathway and promoted B lymphocytes to enter S phase from G0/G1 phase. Meanwhile, SEF exposure also promoted B lymphocytes to enter G2 phase. Namely, SEF exposure significantly promoted the proliferation of B lymphocytes. This discovery provided theoretical and practical support for the prevention or application of negative or positive effects caused by SEF exposure and provided directions for future research.


Assuntos
Neoplasias , Transdução de Sinais , Masculino , Camundongos , Animais , NF-kappa B , Linfócitos B , Proliferação de Células
17.
Pharmacol Res ; 197: 106976, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38032293

RESUMO

The extent of gut inflammation depends largely on the gut barrier's integrity and enteric neuroimmune interactions. However, the factors and molecular mechanisms that regulate inflammation-related changes in the enteric nervous system (ENS) remain largely unexplored. Eph/ephrin signaling is critical for inflammatory response, neuronal activation, and synaptic plasticity in the brain, but its presence and function in the ENS have been largely unknown to date. This review discusses the critical role of Eph/ephrin in regulating gut homeostasis, inflammation, neuroimmune interactions, and pain pathways. Targeting the Eph/ephrin system offers innovative treatments for gut inflammation disorders, offering hope for enhanced patient prognosis, pain management, and overall quality of life.


Assuntos
Encéfalo , Qualidade de Vida , Humanos , Efrinas , Homeostase , Inflamação
18.
J Mater Chem B ; 11(43): 10369-10382, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37873599

RESUMO

Ceria nanozyme-based ROS scavengers have shown great potential in the treatment of inflammatory bowel disease (IBD) through microenvironment regulation. However, the currently developed nanotherapeutics suffer from difficulties in concomitantly achieving small sizes and stable interparticle dispersion which is pivotal to sufficient oxygen vacancies facilitating electron transfer and oxygen storage in the dynamic cycling of Ce3+/Ce4+ redox pairs. Herein, a hybrid nanosystem consisting of ceria nanodots supported on redox-active mesoporous hosts was developed to address the challenge of ROS scavenging, in particular the efficient downregulation of the readily renewable, highly concentrated H2O2 species. Specifically, Ce4+ ions oxidized from Ce3+ in weakly basic solution were captured and reduced in time by the abundant catechols on the mesoporous polydopamine nanoparticles. This led to strong restriction of ceria growth (∼2.8 nm) in the ion precipitation process and efficient maintenance of the Ce3+/Ce4+ ratio at a high value of 1.59 which is 4.8 fold higher than that of homogeneously nucleated ceria nanoparticles. Through this design, the nanohybrid showed an attractive catalytic performance in scavenging multiple ROS species, particularly the fast and recyclable conversion of H2O2. Thereby, significant suppression of the inflammatory cytokine/chemokine secretion was achieved by inhibiting the activation of NF-κB signaling pathways (5.1 fold higher as compared to those of pristine ceria nanoparticles), upregulating the Nrf2 signaling pathway, and reducing the proportion of M1 macrophages at IBD sites. Therapeutic efficiency was also demonstrated by the effective repair of the intestinal mucosal barrier by recovering the tight junction integrity in vivo. This study sheds light on the employment of redox-active hosts to support ceria catalysts for advancing anti-inflammation applications by boosting ROS scavenging performance.


Assuntos
Peróxido de Hidrogênio , Doenças Inflamatórias Intestinais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Oxigênio , Doenças Inflamatórias Intestinais/tratamento farmacológico
19.
Animals (Basel) ; 13(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37760253

RESUMO

The fatty acid profiles of ruminant-derived products are closely associated with human health. Ruminal microbiota play a vital role in modulating rumen biohydrogenation (BH). The aim of this study was to assess the influence of dietary supplementation with phlorotannins (PTs) extracted from Sargassum on rumen fermentation, fatty acid composition and bacterial communities by an in vitro culture study. The inclusion of PTs in the diet increased dry matter digestibility and gas production, and reduced ammonia-N concentration and pH. PT extract inhibited rumen BH, increasing the content of trans-9 C18:1, cis-9 C18:1, trans-9 and trans-12 C18:2 and reducing C18:0 concentration. 16S rRNA sequencing revealed that PTs caused an obvious change in rumen bacterial communities. The presence of Prevotella decreased while carbohydrate-utilizing bacteria such as Prevotellaceae_UCG-001, Ruminococcus, Selenomonas, Ruminobacter and Fibrobacter increased. Correlation analysis between rumen FA composition and the bacterial microbiome revealed that Prevotellaceae_UCG-001, Anaerovorax, Ruminococcus, Ruminobacter, Fibrobacter, Lachnospiraceae_AC2044_group and Clostridia_UCG-014 might have been involved in the BH process. In conclusion, the results suggest that the inclusion of PTs in the diet improved rumen fermentation and FA composition through modulating the rumen bacterial community.

20.
J Cell Physiol ; 238(9): 2026-2038, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37565518

RESUMO

Cell death is a natural biological process that occurs in living organisms. Since 1963, extensive research has shed light on the occurrence, progress, and final outcome of cell death. According to different cell phenotypes, it is classified into different types, including apoptosis, pyroptosis, necroptosis, autophagy, ferroptosis, cuproptosis, and so on. However, regardless of the form of cell death, what we ultimately expect is the disappearance of abnormal cells, such as tumor cells, while normal cells survive. As a result, it is vital to investigate the details of cell death, including death triggers, potent regulators, and executioners. Although significant progress has been made in understanding molecular pathways of cell death, many aspects remain unclear because of the complex regulatory networks in cells. Among them, the phosphoinositide-3-kinase (PI3K)/protein kinase B(AKT) pathway is discovered to be a crucial regulator of the cell death process. AKT, as a proto-oncogene, has become a major focus of attention in the medical community due to its role in regulating a multiplicity of cellular functions counting metabolism, immunity, proliferation, survival, transcription, and protein synthesis. Here, we explored the connection between the PI3K/AKT pathway and cell death, aiming to enhance our comprehension of the mechanism underlying this process. Such knowledge may pave the way for the subsequent development of more effective disease treatments, such as finding suitable targets for drug intervention.


Assuntos
Fosfatidilinositol 3-Quinase , Proteínas Proto-Oncogênicas c-akt , Morte Celular Regulada , Apoptose , Proliferação de Células , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...